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It is shown that no long-range cl:ystalline order is possible in a two-dimensional 
electron system, in spite of the long-range nature of the forces. The order is 
destroyed by the transverse phonons, as can be seen either by Peierls' argument 
or more rigorously by a modification of Mermin's argument. 
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1. I N T R O D U C T I O N  

Recently, two-dimensional electron systems have been widely studied, both 
theoretically and experimentally. A transition to a classical Wigner solid 
phase has been observed, ~l) in agreement with a numerical simulation ~2) 
and theoretical approaches. O'4) The question arises of whether this two- 
dimensional "solid" phase has a genuine crystalline long-range order. 
Arguments according to which thermal fluctuations do not allow crystalline 
order in one and two dimensions have been given by Peierls (5) and 
Landau, (6) and later Mermin (7'8) gave a rigorous proof of the absence of 
order. Mermin's  proof, however, is restricted to short-range potentials and 
therefore cannot be used, as it stands, for electrons. Very recently, Baus (9) 
extended Mermin's  proof to some longer range potentials (at the expense of 
a lesser degree of rigor); however, for the case of a two-dimensional 
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electron system, Baus' approach is inconclusive and crystalline order can- 
not be excluded by his argument. 

In the present paper, we recall that the simple Peierls argument does 
apply to a two-dimensional system of electrons. Although the longitudinal 
phonons here become harmless "plasmons," the order is destroyed by the 
transverse soundlike phonons. Mermin's argument, as extended by Baus, is 
inconclusive because in that proof the roles of the transverse and longitudi- 
nal modes are not disentangled from one another. In the following, we 
show that, through a suitable modification of the argument, it is possible to 
separate the role of the transverse modes, which do prevent long-range 
order. Therefore, both the Peierls argument and a modified Mermin argu- 
ment lead to the same conclusion: the absence of positional long-range 
order for an infinite two-dimensional electron system. This conclusion, of 
course, does not forbid the existence of a solid phase characterized by other 
properties, such as directional long-range order, (7) and approximate posi- 
tional long-range order in the practical case of a finite system. (2,v) 

The model which is considered here is a two-dimensional system of 
electrons of charge e and mass m. They interact with one another through 
the Coulomb potential e2/r. Furthermore, they are embedded in a uniform 
background of opposite charge, which ensures overall neutrality. 

2. THE PEIERLS ARGUMENT 

This well-known argument starts from the assumption that a crystal 
exists. The vibrations of this crystal are studied within the harmonic 
approximation, and the mean square displacement of a particle is com- 
puted. When this mean square displacement is found to become infinite in 
the limiting case of an infinite system (the thermodynamic limit), it is 
concluded that the initial assumption that crystalline order exists is false. 

This argument has been applied to the two-dimensional electron 
system by Chaplik O~ and Crandall. (11) For a system of N electrons, the 
mean square displacement of any of them is found to be 

( u 2 ) _  h • c~176 
2Nm k,s %(k) (1) 

where fl = 1 /k  B T (k 8 is Boltzmann's constant and T is the temperature) 
and where %(k) is the frequency of a phonon of wave number k and 
polarization s. Here, in the long-wavelength limit, the frequency ~0l(k ) of a 
longitudinal phonon behaves like k 1/2, while the frequency ~0t(k ) of a 
transverse phonon behaves like k. In the thermodynamic limit, the sum on 
k in (1) becomes an integral on the two-dimensional k space. While the 
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contribution from wt(k ) remains finite, the linear k behavior of %(k) results 
in a logarithmic divergence of (u  2) at any finite temperature. 

Therefore, the long-range nature of the 1/r potential, although it is 
responsible for the hardening of the longitudinal phonon dispersion law 
into k 1/2, does not invalidate the Peierls argument here, because transverse 
phonons with a normal linear dispersion law are still there. It should be 
noted that a different story may occur in one-dimensional models with 
long-range forces. For instance, the one-component plasma in one dimen- 
sion, in which the particles interact through a potential proportional to their 
distance, has only longitudinal modes with a finite plasma frequency; (u2) 
is then found to be finite in the harmonic approximation, in agreement with 
the existence of a rigorous proof, ~12) in the classical case, that this model 
exhibits crystalline order. 

3. A M O D I F I E D  M E R M I N  A R G U M E N T  

The Peierls argument is based on a harmonic approximation. Although 
a completely rigorous approach is beyond the scope of the present paper, 
we now give an argument, inspired by Mermin's approach, where the 
harmonic approximation is not used. We consider only the classical case. 
We find it convenient to use periodic boundary conditions. If the electrons 
are supposed to form a crystal with a Bravais lattice generated by a I , a 2, we 
take a box of sides Nla I and N2a 2 and wrap it on a torus in the usual way. 
Since we want any crystalline order to be signaled by a periodic one-body 
density, overall translations of the crystal must be prevented. This is 
achieved by introducing a periodic external potential V e with periods a 1 
and a 2. The thermodynamic limit is taken first, and afterwards the external 
potential is brought to zero. The criterion for crystallinity is that the 
one-body density be a (nonconstant) periodic function with periods a I and 
a 2 after this double limit has been taken. We want to show that this is 
impossible. 

We start from the Schwartz inequality 

(IAI2)/> I(A*B>I2/(IB[2> (2) 

where A and B are two dynamical variables and where ( �9 �9 �9 ) denotes the 
canonical equilibrium average. We define one-body functions of the posi- 
tion r by 

~b(r) = exp[ i (k  + K ) - r ]  (3) 

and 

cp(r) = exp(ik , r )  (4) 
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where K is some nonzero reciprocal-lattice vector (i.e., K.  a I and K.  a 2 are 
multiples of 2~r) and k is of the form 

nl n 2 
k = - ~ b ,  + ~ b 2 ,  b~ �9 av -- 2~rt~v (5) 

so that ~/(r) and ~(r) obey periodic boundary conditions on the wails of the 
box. We now choose 

N 

A = ~,  ~(rj) (6) 
j = l  

N 
B = e BU E Vr e-Bw] (7) 

j = l  

rj is the position of particle j, U(rl, r 2 . . . . .  rN) is the potential energy of the 
N particles, and Vtj denotes the derivative with respect to rj along a given 
direction marked by a unit vector e r Using (6) and (7) in (2), and 
performing integrations by parts in which the surface terms vanish due to 
the periodic boundary conditions, we find 

(I ~ $(rs)l 2) t> I(Esw(rJ)Vq+*(rJ))12 
s (2slVv~(rj) l  z + flEi,y~(ri)~ (8) 

Using (3) and (4) in (8), we obtain 

[(k + K) �9 e,]2loKI 2 
(9) 

S(K + k) > (k.  et) 2 + flDtt(k) 

where 

is the structure factor, 

S(k) = 1 ( [ 2  exp(ik,  ri)[ 2) (10) 
J 

1 PK = ~ ( ~  exp(iK �9 rj)) (11) 
J 

is the K Fourier component of the one-body density (crystalline gong-range 
order would be signaled by a nonzero value of OK for at least one nonzero 
reciprocal-lattice vector K), and 

1 (~_.{exp[ik . (r i_rj )])Vt iVt jU) (12) D,,(k) = 
t,j 

In (12), there are contributions from the particle-particle interactions, the 
particle-background interactions, and the external localizing potential. The 
particle-background contribution is of order oe2/L, where O is the number 
density of the electrons and L a length which defines the size of the box; 
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therefore this contribution vanishes in the thermodynamic limit. In this 
limit, 

D.(k) = E + Dt~~ (13) 

where E is the contribution from the external potential a n d  Dt~~ the 
contribution from the particle-particle interactions e2/r~j. These contribu- 
tions are 

E =  lim [ l (p(r)V2tVe(r)dr ] (14) 
N-~ + oo L ~ v J  J 

where o(r) is the one-body density, and 

D,~~ (k) ofg(r)[1 c o s k - r ] V  2e2 = - - - d r  ( 1 5 )  
r 

where g(r) is the pair distribution function, which is defined as usual by 

pg(r) = N---)+ oolim [ 1 ~ (  ~ 8(ri -- rj --r)>] (16) 
i~ j  

In a harmonic approximation, m - tD. should be an element of the dynami- 
cal matrix. Here, no harmonic approximation is made, but, guided by the 
idea that the transverse modes are the relevant 3 ones, we choose the 
direction e t as transverse to k: 

k" e t = 0 (17) 

With this choice, one obtains, by an integration by parts, 

f(1 - cosk .  r~72j ' e-~2r d r=  0 (18) 

Therefore, writing the pair distribution function g(r) as 

g(r) = 1 + h(r) (19) 

one can recast (15) as 

= O _ f h ( r ) [ 1  - cosk.  r]V, ar Dt~~ (20) 

In the small-k limit, by expanding 4 cos k .  r, we find DtS~ to behave like 
Ck 2, with 

C = �89 cos20(3 sin20 - 1) dr (21) 

3 In the original Mermin argument,  the gradient vector is used rather than its component  Vt, 
and the trace of the matrix D appears rather than its single element Dtt. In the case 
considered here, it is essential to have D u alone in the denominator  of (9). 

4 We assume that an expansion of cos k .  r is legitimate, at least for giving correctly the lowest 
order term. A rigorous proof would require more knowledge than we have about h(r). 
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(0 is the angle between k and r). We assume the electron lattice to be a 
triangular one; (~3) this makes h(r) invariant when 0 is increased by 9r/3. 
Thus, if we use in (21) the identity 

cos20(3 sin20 - 1) = - ~ - �89 cos20 - 3 cos40 (22) 

only the first term on the right-hand side of (22) contributes to (21), which 
becomes 

C = -  pfh(rl(e2/r) dr (23) 

Therefore, - 8 C  is the potential energy per particle (not including the 
interaction energy with the external potential). The existence of the thermo- 
dynamic limit for the present system has not been rigorously proved. Here 
we assume that the potential energy per particle has a finite limit, or at least 
that C has finite lower and upper bounds when systems of increasing size 
are considered. Using (13) and (17) in (9), we obtain 

S(K + k) >/(K. e,)21O~I=/B[E + O,~~ ] (24) 

The denominator on the right-hand side of (24) is nonnegative, since it 
comes from the (In [2~ of (2). Therefore, we can write 5 

S(K + k) > (K. et)2IOKI2/B[IEI + IO,~~ (25) 
where Dt~~ behaves like I CI k2 for small k values. 

The final step follows the line of the original argument. Both sides of 
(25) are multiplied by a positive Gaussian function f([K + kl), divided by 
the surface S of the box, and summed on all k values of the form (5). In 
terms of the Gaussian Fourier transform 

1 fdq[exp( iq .r )] f (q)  (26) F ( r ) -  (2~r)2 

we obtain in the thermodynamic limit 

Ipld____2_ 2 ( dk(K.  e,)2f(IK + ki) (27) 
pj(g(r)F(r)dr >1 (2qr)2 fl J IEI + [O,~0)(k)l 

F(0) + 

From what we know about the general shape of the pair distribution 
function g(r), it is rather obvious that the left-hand side of (25) is finite. 
[We could also argue that lpfg(r)F(r)dr is bounded by the difference in 
free energies per particle for the pair potentials eE/r and (e2/r) - F(r), but 
we must then assume that the free energy per particle exists in the 
thermodynamic limit for the latter case as well.] We can decrease the 

5 This step is perhaps unnecessary, because it is likely that E and Dt~ O) are both positive. 
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r ight-hand side of (27) by restricting the integrat ion domain  to a small 
circle a round  the origin, where ]Dt~~ behaves  like IC[k 2. The  integral is 
then of the order  of ]lnlEl[. Therefore,  when the external potent ial  Ve is 
wi thdrawn and E goes to zero, the integral diverges, and  the inequali ty (27) 
can be satisfied only if OK goes to zero. N o  spontaneous  crystalline order 
survives. 

4. C O N C L U S I O N  

Mainly  due to the absence of informat ion  abou t  the existence of the 
t he rmodynamic  limit, we have not  been able to reach complete  mathemat i -  
cal rigor. We  believe, however,  that  the ma in  point  in our a rgument  is 
essentially correct:  the transverse modes  do not  allow a posit ional long- 
range order  in an infinite two-dimensional  electron system, in spite of the 
long-range nature  of the forces. 

With  the same limitations in rigor, the above  conclusion can be easily 
generalized to a two-dimensional  system of particles interacting through a 
repulsive potent ial  1 / r  n, n being any  positive real n u m b e r  (a background  is 
needed for n ~< 2; the case n > 2 is covered by  the original Mermin  
argument) .  6 
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